Effects of hypothermia combined with neural stem cell transplantation on recovery of neurological function in rats with spinal cord injury

نویسندگان

  • DONG WANG
  • JIANJUN ZHANG
چکیده

The microenvironment of the injured spinal cord is hypothesized to be involved in driving the differentiation and survival of engrafted neural stem cells (NSCs). Hypothermia is known to improve the microenvironment of the injured spinal cord in a number of ways. To investigate the effect of NSC transplantation in combination with hypothermia on the recovery of rat spinal cord injury, 60 Sprague‑Dawley female rats were used to establish a spinal cord hemisection model. They were divided randomly into three groups: A, spinal cord injury group; B, NSC transplantation group; and C, NSC transplantation + hypothermia group. At 1, 2, 4, 6 and 8 weeks post‑injury, the motor function of all animals was evaluated using the Basso, Beattie and Besnaham locomotor scoring system and the inclined plane test. At 4 weeks post‑transplantation, histological analysis and immunocytochemistry were performed. At 8 weeks post‑transplantation, horseradish peroxidase nerve tracing and transmission electron microscopy were conducted to observe axonal regeneration. The outcome of hind limb motor function recovery in group C significantly surpassed that in group B at 4 weeks post‑injury (P<0.05). Recovery was also observed in group A, but to a lesser degree. For the pathological sections no neural axonal were observed in group A. A few axon‑like structures were observed in group B and more in group C. Horseradish peroxidase‑labeled neurofibers and bromodeoxyuridine‑positive cells were observed in the spinal cords of group C. Fewer of these cells were found in group B and fewer still in group A. The differences among the three groups were significant (P<0.05). Using transmission electron microscopy, newly formed nerve fibers and myelinated nerve fibers were observed in the central transverse plane in groups B and C, although these nerve fibers were not evident in group A. In conclusion, NSC transplantation promoted the recovery of hind limb function in rats, and combination treatment with hypothermia produced synergistic effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Urodynamic Parameters in Spinal Cord Injury-Induced Neurogenic Bladder Rats after Stem Cell Transplantation: A Narrative Review

Neurogenic bladder (NGB) secondary to spinal cord injury (SCI) is accompanied with several complications such as urinary tract deterioration, urinary incontinence, and consequently lower quality of life (QoL), significant morbidities, and occasionally death. Current therapeutic methods have some side effects and there is no treatment for the upper urinary tract injuries. Stem cell therapy is a ...

متن کامل

Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats

Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...

متن کامل

Cell Therapy in Spinal Cord Injury: a Mini- Reivew

Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provid...

متن کامل

Improvement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow

Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015